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Abstract

An implicit method for the computation of unsteady 
ows on unstructured grids

is presented. Following a �nite di�erence approximation for the time derivative, the

resulting nonlinear system of equations is solved at each time step by using an agglom-

eration multigrid procedure. The method allows for arbitrarily large time steps and is

e�cient in terms of computational e�ort and storage. Inviscid and viscous unsteady


ows are computed to validate the procedure. The issue of the mass matrix which

arises with vertex-centered �nite volume schemes is addressed. The present formula-

tion allows the mass matrix to be inverted indirectly. A mesh point movement and

reconnection procedure is described that allows the grids to evolve with the motion of

bodies. As an example of 
ow over bodies in relative motion, 
ow over a multi-element

airfoil system undergoing deployment is computed.
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1 Introduction

Solution techniques for computing steady 
ows on unstructured grids have evolved to a high
degree of sophistication. With explicit schemes, convergence to steady state is usually un-
acceptably slow, especially as the problem sizes and complexities grow. Therefore, either
multigrid methods [20, 29] or implicit schemes [36, 44, 2, 4] are required to accelerate the
convergence. On the other hand, solution techniques for dealing with unsteady 
ows have
lagged behind. Explicit schemes, deemed to be too slow for obtaining steady state solutions,
may be the schemes of choice for certain unsteady applications, when the time scales of
interest are small, or more precisely, when they are comparable to the spatial scales. The
grids should be clustered only in regions of interest; otherwise, the size of the explicit time
step could become unnecessarily small. However, when dealing with many low frequency
phenomena such as 
utter, explicit schemes lead to large computing times. A time-accurate
residual averaging formulation [18, 42], and temporal adaptation techniques [13], which en-
able di�erent cells to take a varying number of local time steps to get to a particular time
level, can be used to realize modest improvements in the performance of explicit methods,
but the sizes of the time steps are still controlled by the spatial resolution. Therefore, it is
desirable to develop a fully implicit method, where the time step is solely determined by the

ow physics and is not limited by the cell sizes. Also, for many practical viscous 
ows, the
time step restrictions imposed by small cells deep inside the boundary layer are excessively
small. Since the boundary layer is quasi-steady, implicit methods that allow for larger time
steps may be more suitable.

When an implicit scheme is used to compute unsteady 
ows, one has to drive the unsteady
residual to zero (or at least to truncation error) at each time step. In the context of factored
implicit schemes, this is usually done by employing inner iterations [31, 30, 7, 33]. It is the
role of these inner iterations to eliminate errors, if any, due to factorization and linearization,
and sometimes also errors arising from employing a lower order approximation on the implicit
side. The number of inner iterations required may be large depending on the 
ow situation,
the size of the time step employed and the extent of mismatch of the explicit and implicit
operators. Jameson [11] has advocated the use of a full approximation storage multigrid
procedure as a driver for a fully implicit scheme when using structured grids. The signi�cant
advantage of the approach when multigrid is used to solve the nonlinear problem is that
it incurs no storage overheads plaguing traditional implicit schemes based on linearization.
The method is therefore particularly attractive for unstructured grid computations in three
dimensions. The method allows the time step to be determined solely based on 
ow physics.
It has been used to compute two- and three-dimensional inviscid 
ows over airfoils and wings
[11, 1] using structured grids. Vassberg [41] has applied this technique to compute 
ow
solutions over oscillating airfoils using unstructured grids where a sequence of triangulations
was generated by removing points from the �ne grid triangulation.

Multigrid techniques have been successfully extended to deal with unstructured grids
by generating a sequence of non-nested grids and using piecewise-linear transfer operators
[20, 29]. An important development in the use of multigrid techniques for unstructured grids
is the agglomeration multigrid algorithm [15, 37, 43] for the two- and three-dimensional
Euler equations. This technique has since been extended to deal with viscous 
ows [14, 22].
The main advantage of the agglomeration multigrid algorithm is that it only requires the
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�ne mesh to be generated; the coarse grids are automatically generated by fusing �ne grid
control volumes using an e�cient graph-based algorithm, resulting in a fully nested sequence
of coarse grid levels.

In this work, the agglomeration multigrid strategy is used to solve the nonlinear system
of equations at each time step. The nested property of the agglomeration approach enables
a straight-forward treatment of problems involving moving meshes. It is also shown that the
mass matrix can be inverted indirectly during the multigrid process. The issue of the mass
matrix is critically examined in both one and two dimensions. In order to allow the grids to
conform to moving geometries, a technique is proposed and tested that attempts to maintain
the validity and quality of the triangulation. Inviscid 
ow over a pitching airfoil and viscous

ow over an impulsively started cylinder are computed and the results are compared with
experiments and other computations. Finally, an exploratory computation is carried out
that simulates the phenomenon of 
ap deployment.

2 Governing equations and discretization

The equations governing compressible 
uid 
ow in integral form for a control volume V(t)
with boundary S(t) are given by

@

@t

Z
V(t)
Wdv +

I
S(t)
[F (W;n;s) �G(W;rW;n)]da = 0; (1)

W = [�; �V ; �e]T

F (W; n; s) = (V � s):nW;

G(W;rW; n) = [0; t; t:V � q:n]T ;

where t and q are respectively, the stress and heat 
ux vectors. � is the density, V is the
velocity vector with Cartesian components Vi, e is the speci�c total energy, n is the outward
unit normal vector of the boundary S(t), and s is the velocity vector of the boundary. The
equations are augmented by the equation of state, which for a perfect gas is

p = (
 � 1)(�e�
�jV j2

2
): (2)

In the present scheme, the variables are stored at the vertices of a mesh composed of
triangles. The control volumes are nonoverlapping polygons which surround the vertices of
the mesh. The contour integrals in Eqn. (1) are replaced by discrete path integrals over the
faces of the control volume which are computed using the trapezoidal rule. This technique
can be shown to be equivalent to using a piecewise-linear �nite-element discretization under
certain conditions. For dissipative terms, a blend of Laplacian and biharmonic operators
is employed [20]. The Laplacian term acts only in the vicinity of shocks and is inactive
elsewhere, while the biharmonic term acts only in regions of smooth 
ow. Only the Laplacian
dissipative term is used on the coarse grids.

After applying the �nite volume procedure, the following system of coupled di�erential
equations is obtained:

d

dt
(VMW ) +R(W ) = 0 (3)
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HereW is the solution vector over the whole �eld, R(W ) is the residual vector approximating
the second integral in Eqn. (1), V is the cell volume associated with the vertex and M is the
mass matrix.

The mass matrix arises because the update indicated by the residual R(W ) should be
made to the average value in the control volume. It thus relates the average value of a
control volume associated with a vertex to the point values of the vertex and those of its
immediate neighbors. This de�nition di�ers from the way the mass matrix is de�ned in �nite
element formulations, where the mass matrix arises naturally from requiring the residual of
the discretized PDE to be orthogonal to a set of trial functions, with the solution expanded in
a set of basis functions. If the dissipative terms are made proportional to the residuals, this
de�nition of the mass matrix carries through, e.g. the Streamline Upwind Petrov Galerkin
method [10]. For �nite volume schemes employing a polynomial reconstruction procedure
within a cell, we instead derive the mass matrix entries by computing the average of this
polynomial over the control volume. The mass matrix M couples the system of ODE's in
Eqn. (3). The e�ect is that even with an explicit scheme, one has to deal with the solution
of a coupled linear system. A technique called \mass-lumping" [38], replaces the matrix M
by the identity matrix. For second-order accurate cell-centered schemes, which employ the
triangles as the control volumes and store the values at the centroids, mass-lumping does not
compromise the accuracy, since the point value at the centroid matches the average value
to second order. However, for cell-vertex schemes on nonuniform grids, the centroid of the
control volume is not represented by the vertex in question. For time-accurate computations
on such grids, mass lumping would appear to introduce locally a �rst order spatial error.
This approximation is routinely adopted for unsteady 
ows as well, and does not appear to
adversely a�ect the quality of the solutions obtained. Davis and Bendiksen [9] observed little
discernible di�erences in the unsteady solutions when using the full and the lumped mass
matrices. However, since they used an explicit scheme, the time steps were quite small and
furthermore, the grids employed appeared to be fairly uniform. The technique employed to
solve the mass matrix (a few Jacobi iterations) in [19, 9] is not e�cient, especially when larger
grids are used. However, Miller [24] and Wathen [45] have established mesh-independent
bounds on the eigenvalues of the diagonally preconditioned mass matrix arising out of linear
�nite elements and have reported that a conjugate gradient method can be used to e�ciently
invert the diagonally preconditioned mass matrix in just a few iterations. When higher order
spatial discretizations are employed, the mass matrix has to be reckoned with, even when
using cell-centered discretizations. We note that the mass matrix can be avoided altogether
if only cell averages are employed for the spatial discretization.

3 The implicit scheme

We �rst outline the implicit scheme as developed by Jameson [11] for cell-centered, structured
grids, where mass lumping was used. Replacing the mass matrix in Eqn. (3) by the identity
matrix and making a 3-point backward-di�erence approximation for the time derivative
yields

3

2�t
V n+1W n+1

�
2

�t
V nW n +

1

2�t
V n�1W n�1
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+R(W n+1) = 0: (4)

When applied to a linear di�erential equation of the form,

dW

dt
= �W (5)

this discretization is A-stable i.e., stable for all values of ��t in the left-half of the complex
plane [8]. Eqn. (4) is now treated as a steady state equation by introducing a pseudo-time
variable t�. The multigrid scheme then solves the following nonlinear system to steady state
using local time steps �t�:

@V U

@t�
+R�(U) = 0; (6)

where U is the approximation to W n+1. Here the unsteady residual R�(U) is de�ned as

R�(U) =
3

2�t
V U +R(U) � S(V nW n; V n�1W n�1) (7)

with the source term

S(V nW n; V n�1W n�1) =
2

�t
V nW n

�
1

2�t
V n�1W n�1 (8)

remaining �xed through the multigrid procedure.
A multi-stage Runge-Kutta scheme applied to solve Eqn. (6) performs the role of a

smoother. A low-storage second order accurate m-stage Runge-Kutta scheme to advance U
is given by

Q0 = U l

::::

V n+1Qk = V n+1Q0 � �k�t
�R�(Qk�1) (9)

::::

U l+1 = Qm

Starting with U1 =W n, the sequence of iterates U l; l = 1; 2; 3:::: converges to W n+1.
However, the way the scheme has been formulated has been observed by Arnone et al. [3]

to be unstable for small physical time steps, �t. This is counter-intuitive because when
using a small �t, the multigrid procedure should converge fast and ideally, in the limit of
explicit time steps, the multigrid procedure should converge in just a few iterations. Melson
et al. [23] showed that the problem is due an instability that arises when a small �t is used.
They modi�ed the scheme to get rid of this instability. The source of the problem is that
the unsteady residual R�(W ) includes the term 3

2�t
V U and, is therefore, treated explicitly

in the Runge-Kutta scheme. Their analysis showed that if this term were treated implicitly
in the Runge-Kutta scheme, the stability region would grow as �t is decreased. It is easy to
treat the term implicitly since it is only a diagonal term. Splitting the residual R�(U) as

R�(U) =
3

2�t
V U +R(U) � S; (10)
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the Runge-Kutta scheme now becomes,

Q0 = U l

::::�
I +

3

2�t
�k�t

�

�
V n+1Qk = V n+1Q0 (11)

� �k�t
� [R(Qk�1)� S]

::::

U l+1 = Qm

With the modi�ed scheme, Melson et al. [23] have shown that arbitrarily large or small �t
may be employed.

As in [11, 23], we employ a full approximation storage multigrid scheme. The source
term is computed only on the �ne grid and the coarse grid problems are driven by the �ne
grid residuals. For the generation of coarse grids we follow the agglomeration multigrid
procedure. In this method, a sequence of coarse grids is generated using e�cient graph-
based algorithms. This method has certain advantages when dealing with rigidly moving or
deforming meshes. Since the edges that comprise the coarse grid volumes are subsets of the
�ne grid control volume edges, when the grid moves rigidly or deforms, the projections of
the control volume faces onto the coordinate directions are easily computed from those of
the �ne grid. Also, as long as no grid points are added or removed, and the triangulation
remains valid, and the grid connectivity remains unchanged, the interpolation operators
are unchanged. Multigrid schemes based on non-nested triangulations would require the
recomputation of the interpolation operators when the grids deform. Even if the mesh
connectivity changes, the agglomeration algorithm is e�cient enough that it can be used to
regenerate the coarse grids without incurring substantial overheads.

4 Treatment of the mass matrix

When employing a vertex-centered approximation, making a 3-point backward-di�erence
approximation for the time derivative yields

3

2�t
V n+1Mn+1W n+1

�
2

�t
V nMnW n

+
1

2�t
V n�1Mn�1W n�1 +R(W n+1) = 0: (12)

The multigrid scheme now solves the following system to steady state using local time steps
�t�:

@V U

@t�
+R�(U) = 0; (13)

where U is the approximation to W n+1, and R�(W ) now includes the mass matrix terms.
Notice that the �rst term @

@t�
V U does not involve the mass matrix, thus uncoupling the

system of equations. The explicit Runge-Kutta scheme can be applied exactly as before.
The inversion of the mass matrix is thus accomplished indirectly during the multigrid pro-
cedure. However, the modi�ed scheme of Melson et al. [23] poses a serious problem. Their
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modi�cation would require the term 3
2�t

VMU , which is no longer a diagonal term, to be
treated implicitly. We have devised a modi�cation that solves this problem which is detailed
below. The implicit Runge-Kutta scheme that is stable for all �t is given by

Q0 = U l

::::�
I +

3

2�t
�k�t

�Mn+1
�
V n+1Qk = V n+1Q0 �

�k�t� [R(Qk�1)� S]

::::

U l+1 = Qm (14)

where the source term S is now given by

S =
2

�t
V nMnW n

�
1

2�t
V n�1Mn�1W n�1 (15)

If we simply replace the mass matrixM by the identity on the left hand side of Eqn. (14), we
have observed that the instability at small time steps persists. In our modi�cation, we �rst
add and subtract 3

2�t
�k�t�Mn+1V n+1Qk�1 on the right hand side of Eqn. (14) to obtain

�
I +

3

2�t
�k�t

�Mn+1

�
V n+1Qk = V n+1Q0 �

�k�t
�R�(Qk�1) +

3

2�t
�k�t

�Mn+1V n+1Qk�1; (16)

where use has been made of the equation

R�(U) =
3

2�t
V MU +R(U) � S: (17)

Note that the same term 3
2�t

�k�t
�MV Q appears on the left and the right hand sides of

Eqn. (16), except that they are evaluated at the k� 1 and k stages, and that R�(U) is being
driven to zero. The mass matrix M can now be replaced by �I, where I is the identity
matrix and � is a constant yielding the following equation:

�
1 +

3

2�t
�k�t

��

�
V n+1Qk = V n+1Q0

��k�t
�R�(Qk�1) +

3

2�t
�k�t

��V n+1Qk�1 (18)

The method can always be stabilized by increasing � and is akin to using a damped Jacobi
method. The Runge-Kutta scheme no longer requires a matrix inversion. For small time
steps of the order permitted by the explicit scheme, we �nd that the choice of � = 2 stabilizes
the scheme.
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5 Mesh point movement strategies

In order to be able to perform unsteady 
ow simulations over moving geometries, a body-
conforming mesh has to be regenerated either globally at each time step, or the existing grid
can be allowed to deform. The former option is expensive, especially in three dimensions.
However, Baum et al. [6] have proposed some simplifying strategies. Whenever the body
movement becomes too severe, they regenerate a coarse mesh either locally or globally. This
is followed by the use of adaptive h-re�nement in order to create a �ne mesh. In the present
work, we only investigate mesh point movement strategies. Tension spring analogy [5, 28, 35]
or other physical analogies, such as incompressible 
ow [12], are typically used to move the
mesh points. In the former case, the distribution of the spring sti�nesses is crucial. Since the
techniques try to maintain the connectivity of the grid at all costs, the grid lines may cross
resulting in invalid triangulations. Nevertheless, for many simple con�gurations, such as
isolated airfoils, no crossover occurs and the spring analogy has been demonstrated to work
well e.g., [5]. For such cases however, the use of exponentially varying scaling factors [9] or
rigid body motion are simpler. The real challenge for any mesh point movement strategy is
when relative motion is present between bodies in close proximity and when �ne grids are
employed. Other possibilities for grid movement are methods in use in the moving �nite
element method [25], where evolution equations are derived for grid point motion from the
governing equations.

In our approach, we use the tension spring analogy to allow the grid points to react to
the motion of the geometries. The following linear system of equations is solved by a Jacobi
method: X

j

Kij(xi � xj) = Sij; (19)

where the source term Sij is computed so as to maintain the initial grid in the absence of any
displacements. The spring sti�ness Kij is taken to be l�pij where lij is the length of the edge
joining nodes i and j. Over a number of applications, we have found the value of p = 2 to
work well. When the boundary motion is prescribed, this method does not guarantee that
the grid lines will not cross. The next improvement is to make the spring system nonlinear
i.e., the boundary motion is decomposed into smaller steps and the procedure is repeated at
every step. When relative motion is present, this results in excessive skewing of grid lines and
eventually the lines do cross. Thus some kind of reconnection procedure is unavoidable. We
choose to swap the edges by the Delaunay criterion. However, even though the grid remains
valid, the resulting point distribution is typically unsatisfactory. Therefore a presmoothing
procedure is used to smooth the distribution of points. This involves using a Jacobi method
on the following system:

(I + �Ni)x
new
i = xold

i + �
X
j

xj
new; (20)

where Ni is the degree of node i. Typically we �nd that of the order of 100{200 steps
are required to solve Eqn. (19), while only about 3{4 iterations of Eqn. (20) are su�cient.
The number of Jacobi iterations to solve Eqn. (19) may appear to be large, but this is
mainly due to the large displacements arising from using large time steps permitted by the
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implicit scheme. The grid motion procedure described above also has applications in design
optimization, where the surface geometry changes during the design cycle.

For the implicit 
ow solver, the coarse grids are rederived by using the agglomeration
algorithm whenever the grid connectivity changes. An incremental agglomeration algorithm
is possible that operates only on the a�ected region, but this is not currently done. Typically,
for the time steps used with the implicit scheme, the grid reconnection and reagglomeration
consume about a third of the time required for the 
ow solver, mainly on account of the
swapping procedure not being vectorized.

The grid movement terms need to be discretized carefully so that freestream is preserved.
In other words, simply moving the grid through the domain should not change the freestream
solution. The Geometric Conservation Law (GCL) [39, 47, 27] formalizes this concept. It
can be derived from the continuity equation in Eqn. (1) by �rst assuming the control volumes
to be the simplices themselves. Assuming a uniform velocity �eld and a constant density
�eld, we obtain

@V

@t
+
I
S(t)

[V � s]:n da = 0; (21)

where V is the velocity �eld and s is the velocity of the boundary S(t). Since V is constant
and the control volume is assumed to be closed at all times so that

H
S(t) n da = 0, the

equation becomes
@V

@t
�

I
S(t)

s:n da = 0: (22)

The discrete form of this equation should hold at all time steps and for all the simplices and
is called the GCL. Using a forward Euler approximation for the time derivative, we obtain

V
n+1
I � V

n
I =

Z t+�t

t

I
SI(t)

s:n da dt

=
X
j

Z t+�t

t

Z

I;j(t)

s:n da dt; (23)

where SI(t) =
P

j 
I;j(t) is the surface enclosing the volume VI(t) of simplex I. The term
inside the summation represents the volume swept out by the boundary 
I;j as the grid
points forming that segment move. If the grid points are allowed to move arbitrarily, the
GCL enables the edge velocity s and the grid normal n to be determined. Since simplices
are convex, the volumes Vn;Vn+1 are uniquely determined by the positions of the points at
time levels n and n+ 1. In two dimensions, it can be shown [47] that the change in volume
can be expressed as

V
n+1
I �V

n
I = �t

X
j

s
n+1=2
j :N

n+1=2
j ; (24)

where the summation is over the edges forming the triangle I. Here the edge velocity s
n+1=2
j

is given by the average of the velocities of the vertices connected by the edge j, and N j , the
normal scaled by the edge length, is given by the average of the values at the old and new
time level:

N
n+1=2
j = 0:5(N n

j +Nn+1
j ): (25)
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The velocity is assumed to be constant within a time step. Therefore, the velocity of vertex
i is given by

s
n+1=2
i =

Xn+1
i �Xn

i

�t
; (26)

where X is the position vector of the vertex.

R

i

j

LN

N

Figure 1: Control volume for vertex i and edge normals.

For a vertex-centered scheme, such as the one used in the present work, the control
volumes are formed by the median dual. We closely follow the excellent development of
Nkonga and Guillard [27], who have presented the steps involved in properly discretizing the

ow equations in three dimensions so as to obey the GCL for a two-level scheme in time. The
control volume edges are delimited by segments of the medians of the triangles (Figure 1).
Inspecting one edge of the triangle, we notice that the control volume edge is comprised of
two, generally non-collinear median segments. The results from Eqns.(24, 25) can be used to
express the change in the volume of any polygon as a summation over the edges comprising
the polygon of the volumes swept out. We obtain the following expression for the change in
Vi, the volume associated with vertex i:

V n+1
i � V n

i = �t
X
j

N
n+1=2
j;L :s

n+1=2
j;L +N

n+1=2
j;R :s

n+1=2
j;R ; (27)

where the summation is over the edges meeting at vertex i. Also, Nn+1=2
j;L and Nn+1=2

j;R , the
normals scaled by the lengths to the left and right of the edge, are obtained as averages of
the values at n and n+1 time levels. The edge velocities, s

n+1=2
j;L and s

n+1=2
j;R , are computed as

the averages of the velocity of the midpoint of the edge and that of the left or right centroid,
respectively.

In a vertex-centered �nite-volume setting, the discretization of the governing equations
(Eqn. (1)) for a two-level explicit or implicit scheme that obeys the GCL is performed as
follows:

(MVW )n+1 � (MVW )n

�t
+

X
j

W �
h
N

n+1=2
j;L :(V �

� s
n+1=2
j;L ) +N

n+1=2
j;R :(V �

� s
n+1=2
j;R )

i

+ gj(W
�;N

n+1=2
j ) = 0; (28)
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where � = n for forward and � = n+1 for backward Euler methods, and W is the average of
the values at the vertices connected by the edge j. Also, gj represents the discretization of

the last term in Eqn. (1) and makes use of the scaled normal for the edge, N
n+1=2
j , de�ned

as
N

n+1=2
j =N

n+1=2
j;L +N

n+1=2
j;R : (29)

When a three point backward di�erence approximation is used for the time derivative,
the spatial discretization is performed as follows:

3(MVW )n+1 � 4(MVW )n + (MVW )n�1

2�t

+
X
j

W n+1
f
3

2
[N

n+1=2
j;L :(V n+1

� s
n+1=2
j;L ) +N

n+1=2
j;R :(V n+1

� s
n+1=2
j;R )]

�
1

2
[Nn�1=2

j;L :(V n+1
� s

n�1=2
j;L ) +N

n�1=2
j;R :(V n+1

� s
n�1=2
j;R )]g

+
3

2
gj(W

n+1;N
n+1=2
j )�

1

2
gj(W

n+1;N
n�1=2
j ) = 0: (30)

It is easy to see that this formulation satis�es the GCL, and that it reduces to the standard
three-point formula (Eqn. (12)) in the absence of any grid motion. We mention here that
for �xed grid applications it is not necessary to computeN j;L and N j;R separately. Instead
only the sum of the two is required, which can be computed easily from the the centroidal
coordinates. On the other hand, for moving grid problems, the N j;L and N j;R need to be
computed separately for use in Eqns. (28,30).

The spatial discretization given above only deals with the convective and di�usive 
uxes.
The dissipative 
uxes are computed in the usual fashion using the scaled normal given by
Eqn. (29) for the two-level explicit or implicit scheme. For the three-point scheme, the scaled
normal is de�ned as follows:

N j = 3=2
h
N

n+1=2
j;L +N

n+1=2
j;R

i
� 1=2

h
N

n�1=2
j;L +N

n�1=2
j;R

i
: (31)

The discretization of the dissipative 
uxes has no implications for the GCL as these 
uxes
vanish for a uniform �eld.

We have veri�ed that the formulation given above preserves the freestream conditions
to machine precision. With other treatments, such as simply modifying the 
uxes at the
vertices by using nodal velocities, freestream conditions are preserved to much less precision,
which could be detrimental in some applications.

Finally, we address the issue of boundary conditions for inviscid 
ows. The control volume
for a boundary vertex is illustrated in Figure 2. The summation over the edges in Eqns.
(28,30) is augmented with the contributions from the the boundary edges that delimit the
control volume. For the two-level scheme, the following terms are added to Eqn. (28):

W �
L[N

n+1=2
b;L :(V �

L � s
n+1=2
b;L )] +W �

R[N
n+1=2
b;R :(V �

R � s
n+1=2
b;R )]

+ g(W �
L;N

n+1=2
L ) + g(W �

R;N
n+1=2
R ); (32)

where WL and WR are the values of W on the left and right side of vertex i, N b;R and N b;L

are the outward normals to the boundary edges of the control volumes, and sb;L and sb;R
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Figure 2: Control volume for vertex boundary vertex i and boundary edge normals.

are the grid velocities associated with these edges. For an inviscid all, since the [V � s] = 0,
only the last two terms are retained. Likewise for the three-point scheme (Eqn. (30)), the
additional terms are

W n+1
L [

3

2
N

n+1=2
b;L :(V n+1

L � s
n+1=2
b;L )�

1

2
N

n�1=2
b;L :(V n+1

L � s
n�1=2
b;L )

+
3

2
N

n+1=2
b;R :(V n+1

R � s
n+1=2
b;R )�

1

2
N

n�1=2
b;R :(V n+1

R � s
n�1=2
b;R )]

+
3

2
[g(W n+1

L ;N
n+1=2
b;L ) + g(W n+1

L ;N
n+1=2
b;L )]

�
1

2
[g(W n+1

R ;N
n�1=2
b;R ) + g(W n+1

R ;N
n�1=2
b;R )]: (33)

For an inviscid wall, only the last four terms are retained, implying the following boundary
condition:

V n+1:

�
3

2
N

n+1=2
b �

1

2
N

n�1=2
b

�
=

3

2
N

n+1=2
b :s

n+1=2
b �

1

2
N

n�1=2
b :s

n�1=2
b : (34)

6 Mesh restructuring and interpolation

The procedure for mesh restructuring was discussed earlier. This involved a mechanism for
moving grid points in response to the motion of the boundary points, evolving the solution
with the grid movement terms present, and swapping the edges of the triangulation to
improve grid quality. When using the three point di�erence formula (Eqn.(12)), the swapping
of edges at a particular time step has to be done in such a manner that the triangulation is also
valid (i.e., no crossing of edges) at the previous time step. This additional criterion can easily
be incorporated in the swapping procedure. Using the trapezoidal rule would circumvent
this step and still ensure second order accuracy in time. However it is unattractive, because
of the instabilities that occur as large time step sizes are used [8].
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When the swapping of edges occurs, the solution, which is stored at the vertices of the
triangulation, needs to be modi�ed. For capturing weak solutions of hyperbolic conserva-
tion laws, conservation in time is a requirement. If conservation were not an issue, the
solution need not be modi�ed since it merely changes from one piecewise-linear representa-
tion to another and the two are acceptable second-order accurate solutions. Note that the
swapping takes place at a �xed time step after the solution has already been evolved up
to that time level. It is possible to carry out another iterative loop so that the unsteady
residual is driven to zero in the new con�guration. This would double the work done at
each time step. Instead, we propose a noniterative conservative interpolation at each time
step. With the lumped mass matrix, Eqn. (4), the requirement for conservation is thatP

V ertices WV be conserved before and after the swapping. When an edge is swapped, the
control volumes change for all the four points forming the quadrilateral. Figure 15 shows
a four point quadrilateral subset of a triangulation. The initial triangulation given by the
triangles 125 and 126 and the triangulation after swapping given by the triangles 156 and
256. The portions of the control volumes associated with the four vertices that fall inside the
quadrilateral region are illustrated as well. A conservative interpolation can be performed
by treating the solution inside the control volumes as piecewise constants and computing
geometrically the fractions of the old control volumes comprising the new ones. This would
require complex intersection computations, especially for the vertex-centered scheme, where
the control volume edges are segmented edges. This algorithm may be viewed as a particular
application of the algorithm due to Ramshaw [32]. An algebraic approach that only involves
areas A1; A2; A5; A6; A10; A20; A50; A60 is attractive, but the system becomes underdetermined
if conservation is assumed. The drawbacks of these algorithms are algorithmic complexity
and their di�usive character. The latter is particularly nettlesome because it degrades the
accuracy to �rst order. For example, swapping back to the initial con�guration and repeating
the procedure in Figure 15, will result in equal values at the four vertices.

OLD NEW

A

A
A

A

A

A

A

5

A

5

1
2

6

1’

6’

2’

5’

6

5

1

2

1

6

2

Figure 3: Two possible triangulations of four points and control volumes of vertices.
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In the following, a conservative, linearity-preserving interpolation procedure is presented.
The derivation is given assuming that the lumped mass approximation is adopted. We
observe that the following identity holds:X

V ertices

WV �
X

Triangles

WV; (35)

where V is the area of the control volume and V is the area of the triangle, and W , the
average value in a triangle, is given by the average of the vertex values. Referring to Figure
15, when an edge is swapped, the contributions from the triangles, 125 and 126, change to
the contributions from the two swapped triangles, 156 and 256, on the right hand side of
Eqn. (35). We further note that each term in the right hand-side may be viewed as volume
under a \roof" in the x� y �W space. If the data were linear, the volumes under the two
triangulations would be identical. In that case, no changes need to be made to the solution
at the vertices. In the general case, we compute the contributions to the right-hand side of
Eqn. (35) from the two triangulations as:

Told =
1

3
[(W1 +W2 +W5)V125+ (W1 +W2 +W6)V126] ;

Tnew =
1

3
[(W1 +W5 +W6)V156+ (W2 +W5 +W6)V256] : (36)

Changes are now made to the vertex values in a conservative manner by distributing the
di�erence, Told � Tnew, to the nodes. In principle, the changes can be made to all the four
vertex values and would still result in a linearity-preserving, conservative scheme, but in
inspecting Figure 15 we notice that with swapping, the control volumes associated with
vertices 1 and 2 (connected by the old edge) can only decrease, whereas those associated
with vertices 5 and 6 (connected by the new edge) can only increase. Therefore changes need
to be made only to vertices 5 and 6. We apportion the di�erence, Told � Tnew, equally:

W new
5 V new

5 = W5V
new
5 +

1

2
(Told � Tnew);

W new
6 V new

6 = W6V
new
6 +

1

2
(Told � Tnew): (37)

We now show that the interpolation formulas given by Eqn. (37) satisfy the conservation
property. First note that the overlapping control volume vi, given by the union of the
triangles meeting at vertex i, is related to the nonoverlapping control volume Vi by the
formula,

vi = 3Vi �
X
j

Vj; (38)

where the sum is over all the triangles meeting at vertex i. After swapping, we have

3V new
5 = vnew5 = v5 � V125+ V156 + V256 = v5 + V126: (39)

We can thus derive the following relations:

V new
5 = V5 + V126=3:

V new
6 = V6 + V125=3;

V new
1 = V1 � V256=3;

V new
2 = V2 � V156=3:
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With the help of these relations, it is easy to show that the conservation property holds:

W new
5 V new

5 +W new
6 V new

6 +W1V
new
1 +W2V

new
2 = W5V5 +W6V6 +W1V1 +W2V2; (40)

where use has been made of the fact that the values at vertices 1 and 2 do not change.
In the formulas given by Eqn. (37), the di�erence Told�Tnew has been apportioned equally

to the two vertices. It is easy to see that this could introduce new extrema in the solution.
The degree of freedom available in how this apportionment is made to the two vertices can
be used to e�ectively prevent new extrema. Let

Wmax = Max(W1;W2;W5;W6)

Wmin = Min(W1;W2;W5;W6):

For i = 5 or 6 compute,

ri =

(
V new
i

Wmax�Wi

Told�Tnew
; if Told � Tnew > 0

V new
i

Wmin�Wi

Told�Tnew
; if Told � Tnew < 0:

Let r = Min[0:5; r5; r6]. The interpolation formulas can be written in a compact form as
follows:

W new
5 =W5 +

Told�Tnew
V new

5

h
(r�r5)(r�r6)

(0:5�r5)(0:5�r6)
0:5 + (r�0:5)(r�r6)

(r5�0:5)(r5�r6)
r + (r�0:5)(r�r5)

(r6�0:5)(r6�r5)
(1� r)

i
;

W new
6 =W6 +

Told�Tnew
V new

6

h
(r�r5)(r�r6)

(0:5�r5)(0:5�r6)
0:5 + (r�0:5)(r�r6)

(r5�0:5)(r5�r6)
(1 � r) + (r�0:5)(r�r5)

(r6�0:5)(r6�r5)
r
i
: (41)

The formulas are conservative, linearity-preserving, and also do not introduce new extrema.
In contrast to the conservative formulas that assume piecewise constant values and result in
equal values at the vertices upon repeated application, the new formulas converge locally to
a linear (possibly least squares) pro�le for the four data points upon repeated application.
The swapping and the interpolation formulas generalize to three-dimensional tetrahedral
tessellations and are discussed in the Appendix.

7 Results

First, results from a one-dimensional example are presented illustrating the role of the mass
matrix. On a uniform mesh, since the vertex and the centroid of its control volume coincide,
the mass matrix can be lumped without su�ering any adverse consequences. The situation is
di�erent if a mesh with variable mesh widths is considered. The one-dimensional advection
equation

@u

@t
+
@u

@x
= 0; (42)

is solved on a random grid. The scheme stores the pointwise values ui at locations xi. The
initial condition is a Gaussian and the pro�le is advected by marching to a �xed time. A grid
re�nement study is carried out using a constant CFL number of 0:3. The spatial derivative
is approximated in a MUSCL scheme [40] as 

@u

@x

!
i

=
uLi+1=2 � uLi�1=2

�x
; (43)
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where uLi+1=2, the value interpolated to the left side of the face i+ 1=2, is given by

uLi+1=2 = ui + (xi+1=2 � xi)
ui+1 � ui�1

xi+1 � xi�1
: (44)

The mass matrix, which is tridiagonal, is inverted using the Thomas algorithm. We have
experimented with two de�nitions of the mass matrix. The �rst one derives the mass matrix
by assuming a piecewise linear distribution of data between the grid points and computes
the average over the control volume [xi�1=2; xi+1=2]:

1

4

xi � xi�1

xi+1 � xi�1
ui�1 +

3

4
ui +

1

4

xi+1 � xi

xi+1 � xi�1
ui+1 (45)

A second de�nition of the mass matrix is derived by computing the average of the recon-
struction polynomial within a control volume. This polynomial is given by

u(x) = ui + (x� xi)
ui+1 � ui�1

xi+1 � xi�1
: (46)

The average over the control volume is given by

�
xi�1 � 2xi + xi+1

8(xi+1 + xi�1)
ui�1 + ui +

xi�1 � 2xi + xi+1

8(xi+1 + xi�1)
ui�1 (47)

Figure 1 compares the errors in L2 norm with the mass matrices given by Eqn. (45) and
Eqn. (47), and with the lumped mass matrix. All the schemes exhibit second order accuracy
but the errors are larger with the mass matrix given by Eqn. (45). The results obtained
with the lumped mass matrix are almost identical to those obtained with Eqn. (47). Taylor
series expansion would imply a �rst order error with the lumped mass matrix on a random
grid, whereas Figure 1 clearly indicates second order accuracy. The results therefore reveal
the inadequacy of local analysis. The results obtained with the usual �nite element mass
matrix, with hi = xi � xi�1,

2hi
6(hi + hi+1)

ui�1 +
4

6
ui +

2hi+1
6(hi + hi+1)

ui+1; (48)

are also shown in Figure 1 and again display larger errors compared to the lumped mass
approximation. The reason for this is that the �nite element mass matrix is consistent
with a Galerkin method which corresponds to a central di�erence discretization, whereas
the spatial di�erencing employed here is upwind-biased. After experimenting with a one-
parameter family of mass matrices, we have found that the lumped mass matrix gives the
lowest errors with this particular spatial discretization.

It is well known in �nite element literature [38] that in some cases the lumping of the
mass matrix does not compromise the solution accuracy, but that the mass matrix may play
a crucial role when higher-order discretizations are considered. To examine this, we employ
a quadratic reconstruction procedure utilizing point values. With hi = xi � xi�1, we obtain,

uLi+1=2 = �
h2i+1

4hi(hi + hi+1)
ui�1

+

 
1

2
+
hi+1

4hi

!
ui +

hi+1 + 2hi
4(hi+1 + hi)

ui+1
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Figure 4: L2 norms of the errors with various schemes on a random grid.
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The �nite volume mass matrix is derived by determining the average of the quadratic dis-
tribution and is given by:

a1ui�1 + a2ui + a3ui+1;

a1 =
�2h2i+1 + 2hihi+1 + h2i

12hi(hi + hi+1)
;

a3 =
h2i+1 + 2hihi+1 � 2h2i
12hi+1(hi + hi+1)

;

a2 = 1 � a1 � a3:

The standard Runge-Kutta scheme which is fourth order accurate in time is used for the
higher order computations. Figure 2 shows the error plots using the lumped mass matrix
and the full mass matrix on the random grid. It shows that with the lumped mass matrix,
the accuracy eventually degrades to second order as the grid is re�ned, whereas using the
full matrix yields the third order accuracy of the spatial discretization. We have observed
that using any other de�nition for the mass matrix degrades the accuracy to second order.

The implications for the scheme in multiple dimensions are clear. As long as only a
second order accurate scheme is used and we operate with either cell-vertex or cell-centered
data, the mass matrix may be lumped without any loss of order of accuracy. The mass
matrix can also be ignored for second (and higher) order accurate schemes if a strict cell-
average interpretation is employed. If point values are used to construct third and higher
order accurate schemes, the accuracy will degrade if the mass matrix is lumped. For higher
order accurate schemes based on point values, the indirect mass matrix inversion technique
discussed earlier will help preserve the order of accuracy of the scheme.

We next present results from two-dimensional inviscid calculation over a pitching airfoil.
The transonic 
ow is over a sinusoidally oscillating NACA0012 airfoil where the angle of
attack �(t) varies according to the formula

�(t) = �m + �0sin(!t) (49)

For the test case chosen, �m = 0:016�, �0 = 2:51�, � = !c
2U1

= 0:0814 and the freestream
Mach number,M1 = 0:755. Computing this 
ow using an explicit scheme is time-consuming
because of the low frequency. The 
ows are computed using two meshes, referred to as GRID1
and GRID2, each having 6336 vertices. These are shown in Figures 3 and 4, respectively.
GRID1 is generated by drawing diagonals in a structured C-mesh and is fairly uniform.
GRID2 is generated by random perturbations on GRID1. In GRID2, the centroids of the
control volumes formed by the median dual are not represented well by the vertices. Figure 5
shows the lift histories during the third cycle of oscillation. Four curves are shown, namely,
the histories with the lumped and full mass matrices for GRID1 and GRID2. Since a
projection-evolution approach is not followed, the mass matrix is derived by using a de�nition
similar to Eqn. (45). As expected, the mass matrix has little impact on the integrated
quantities even in the random mesh. The di�erences in the solutions between the two grids
are likewise insigni�cant. The CPU time increases by about 15% when the full mass matrix
is included. These examples have been run with a maximum physical CFL number of 500,
corresponding to using 54 time steps per sinusoidal oscillation of the airfoil. The number of
iterations for the inner multigrid procedure is �xed at 30. Figure 6 shows the convergence
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Figure 6: GRID1 about an NACA0012 airfoil with 6336 vertices.

Figure 7: GRID2 about an NACA0012 airfoil with 6336 vertices.
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of 4-grid agglomeration multigrid procedure during a particular time step with the lumped
and the full matrices where the L2 norm of the unsteady residual R� is plotted as a function
of the multigrid cycles using 4 grid levels. The convergence improves slightly when the mass
matrix is included. The reason for this is that the mass matrix can be recast as an implicit
smoothing operator. The remaining examples have been computed with the lumped mass
matrix. Finally, Figures 7 and 8 shows the e�ect of the physical time step size. Three
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-0.2

0.0

0.2

0.4
C

l

GRID1 - Lumped mass
GRID1 - Full mass
GRID2 - Lumped mass
GRID2 - Full mass

Figure 8: Lift histories during the third cycle of motion.

lift and moment histories are shown, employing 40, 20 and 10 steps per pitch cycle using
the lumped mass matrix and deforming grids. The grid velocities are computed by using
Eqn. (27). The nodes are repositioned by the procedure described earlier. No swapping
of edges occurred in this computation. The number of multigrid cycles used at each time
step are respectively, 15, 20 and 20. With 10 steps per pitch cycle, some discrepancy may
be observed; increasing the number of multigrid cycles (thus solving the nonlinear problem
better at each time step) did improve the solution. Also shown is a comparison with the
experimental data of Landon [16] as well as with a structured grid computation employing
a TVD scheme on the same grid [42]. The di�erences in the moment histories between the
structured and unstructured grid computations may be attributed to the di�erences in the
spatial discretization. To assess the e�ects of swapping, we modify the Delaunay criterion to
force the swapping of edges. Given a quadrilateral with two possible triangulations, rather
than swap to the new con�guration if it has a larger minimum angle, we swap if some
multiple (1.1 in this example) of the minimum angle in the new con�guration is larger than
the minimum angle in the old con�guration; only one pass of this algorithm is performed.
On a coarse triangular grid generated from a structured 128� 32 grid, the moment histories
during the �rst three pitch cycles without the swapping are shown in Figure 9. Figure
10 shows the histories during the �rst �ve pitch cycles with the swapping of edges. It is
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seen that the transient response is indeed quite di�erent especially during the second cycle,
although the response does become periodic during the �fth cycle. Figure 11 shows the
moment histories on a triangular mesh generated from a 256� 64 grid with the swapping of
edges. The transient response is not nearly as erratic as on the 128� 32 grid with swapping
and more in line with the response on the coarse grid without swapping. Note that the
swapping and subsequent conservative interpolation introduces errors proportional to �x2,
which decrease as the grid is re�ned.

We next present a laminar unsteady calculation of impulsive start-up 
ow over a cylinder
at a Reynolds number of 1200. Rumsey [34] has computed this 
ow using a structured grid
code and has made detailed comparisons with experimental data [26]. We employ the same
grid (192 � 64) as in [34], but divide the quadrilaterals into triangles. The 
ow separates
and eventually vortices are shed. The computed Strouhal number is 0.225 as compared to
the experimental value of 0.215 and the computed value of 0.222 using the structured grid.
The time is nondimensionalized as �t = t=(d=U1) where d is the diameter of the cylinder
and U1 is the freestream velocity. The sequence of non-dimensional time steps ��t is chosen
as in [34]: ��t = 0:01 for �t up to 6:0, ��t = 0:02 between �t = 6:0 and 9:0 and ��t = 0:05
above �t = 9:0. We use the agglomeration multigrid strategy with six grids where the edge-
coe�cients needed for computing the viscous and inviscid terms on the coarse grids are
precomputed as in [22]. Seven multigrid iterations were used at each time step yielding
about of 2{3 orders of reduction in the unsteady residual. The centerline velocity at a time
�t = 2:9 is plotted in Figure 8, and the maximum reverse 
ow velocity is plotted in Figure 9
as a function of �t during the initial bubble growth phase. Good agreement may be observed
with experiment. There is some discrepancy with the structured grid code which may be
on account of the fact that it did not employ inner iterations. Thus, errors arising from
factorization, linearization and and mismatch of operators may be present in the structured
grid solution.

The �nal test case represents an exploratory inviscid computation of 
ow over a multi-
element airfoil system undergoing deployment, as an example of bodies in relative motion.
The geometry represents a sectional cut of the wing of the NASA Langley Transport System
Research Vehicle (TSRV), and was obtained by direct measurement of the full scale aircraft
(Boeing 737-100) [46]. The initial position, depicted in Figure 10, corresponds to the 15�


ap setting, while the �nal condition represents the 40� 
ap setting, which is the approach
con�guration for this high-lift system. The initial grid about the 5-element airfoil is generated
using the advancing front Delaunay triangulation method [21] at the 15� 
ap setting and is
displayed in Figure 10. The grid has 26,191 vertices. Figure 11 displays the Mach contours
for steady 
ow at this setting at an angle of attack of 5� and a freestream Mach number of
0.2.

We compute the time-accurate 
ow solution to full deployment using a �ve-grid agglomer-
ation multigrid procedure. The motion is prescribed as a linear variation of both translation
and rotation of the various airfoil elements, and is computed in 300 time steps. The non-

dimensional time for deployment, de�ned as �t = l=
q
p1=�1, is taken as 10. Here l is the

chord of the main element and p1; �1 are the freestream pressure and density. The grid
restructuring involved presmoothing, spring analogy and edge swapping. Figures 12 and 13
depict a closeup of the grid in the 
ap region and the instantaneous 
ow solution at full de-
ployment. Grid quality, while not as good as with the initial mesh, is acceptable considering
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the large scale motion. For this case, rather than the 3-point backward approximation, we
have chosen to use the implicit midpoint (trapezoidal) rule:

V n+1W n+1
� V nW n

�t
+
R(W n+1) +R(W n)

2
= 0:

When the connectivity of the mesh changes, the solution changes from one piecewise linear
representation to another and the new control volumes are used to evolve the solution to
the next time step. Using a 3-point backward rule would require that the volumes at the
previous time step be changed as well. Figure 14 plots the total lift history as well as the lift
histories of the elements as a function of physical time. The total lift, based on the chord
length in the fully nested position, increases from an initial value of 2.53 to a �nal value of
3.10.

8 Conclusions

An e�cient implicit time integration procedure has been developed. The implicit system is
solved by using the agglomeration multigrid procedure. The issue of the mass matrix which
arises in cell-vertex methods is addressed. It is shown that lumping of the mass matrix may
be done for second-order accurate schemes without any degradation in order of accuracy. For
higher order methods based on point values, it is shown that the lumping of the mass matrix
degrades the order of accuracy of the scheme. Inviscid and viscous calculations have been
presented for 
ow over a pitching airfoil and an impulsively started cylinder and the results
have been compared with experiments and other computations. A mesh point movement
strategy has been proposed and tested. This has been used to compute inviscid 
ow over a
multi-element airfoil system undergoing deployment.
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Figure 11: Moment histories during the third cycle of motion with with 40, 20 and 10 steps
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Figure 13: Moment histories on the coarse O-mesh with forced swapping of edges.
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Figure 16: Time history of the maximum reverse 
ow velocity on the symmetric axis of the
wake.
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Figure 17: Initial grid at the semi-deployed position (15� 
ap de
ection).

Figure 18: Mach contours for steady 
ow at the initial position (15� 
ap de
ection).
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Figure 19: Closeup view of the grid at full deployment (40� 
ap de
ection).

Figure 20: Mach contours of the instantaneous solution at full deployment (40� 
ap de
ec-
tion).
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Figure 21: Time history of the lift coe�cients.
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Appendix

We discuss the swapping and interpolation procedures in three dimensions. Given 5 points
in three space, the region enclosed by the convex hull can be tetrahedralized in one of three
ways:

1. 4 tetrahedra sharing a common interior vertex.

2. 2 tetrahedra sharing a common triangular face.

3. 3 tetrahedra sharing a common edge.

Swapping in three dimensions consists of switching between the second and the third choices
to improve the quality of the tetrahedralization [17]. Figure 25 illustrates the 2- and 3-
tetrahedra con�gurations.

1

2

3

 4

5

(b) 3-tetrahedra configuration

1

2

3

 4

5

(a) 2-tetrahedra configuration

Figure 22: Two possible tetrahedralizations of �ve vertices.

Conservative, linearity-preserving interpolation, when switching from the 2-tetrahedra
con�guration to the 3-tetrahedra con�guration, is similar to the two-dimensional situation,
since only the values at the vertices joined by the new edge need to be changed. De�ne

T2 =
1

4
[(W1 +W2 +W3 +W4)V1234+ (W1 +W2 +W3 +W5)V1245] ;

T3 =
1

4
[(W1 +W2 +W4 +W5)V1245+ (W2 +W3 +W4 +W5)V2345+ (W3 +W1 +W4 +W5)V3145] :

Changes are now made to the vertices 4 and 5 in a conservative manner by distributing the
di�erence T2 � T3 using formulas similar to Eqn. (41), where the Wmax and Wmin are taken
as the maximum and minimum over the �ve points.
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Swapping from the 3- to the 2-tetrahedra con�guration is di�erent, however. Here changes
are made to the vertices 1; 2 and 3 by distributing the di�erence T3 � T2. Thus, there are
two degrees of freedom, which are needed to enforce the condition that no new extrema be
created. For i = 1; 2; 3 compute

ri =

(
V new
i

Wmax�Wi

T3�T2
; if T3 � T2 > 0

V new
i

Wmin�Wi

T3�T2
; if T3 � T2 < 0:

and de�ne

r = Min[r1; r2; r3;
1

3
]:

Now assume r = r1. Then

W new
1 V new

1 =W1V
new
1 + r(T3 � T2)=V

new
1 :

De�ne s = Min[r2; r3; 0:5]. Changes are made to vertices 2 and 3 as follows:

W new
2 = W2 +

T3�T2
V new

2

(1 � r)
h

(s�r2)(s�r3)

(0:5�r2)(0:5�r3)
0:5 + (s�0:5)(s�r3)

(r2�0:5)(r2�r3)
s+ (s�0:5)(s�r2)

(r3�0:5)(r3�r2)
(1 � s)

i
;

W new
3 =W3 +

T3�T2
V new

6

(1 � r)
h

(s�r2)(s�r3)

(0:5�r2)(0:5�r3)
0:5 + (s�0:5)(s�r3)

(r2�0:5)(r2�r3)
(1� s) + (s�0:5)(s�r2)

(r3�0:5)(r3�r2)
s
i
:

Formulas for the remaining cases, when r = 1
3
; r2; r3, can be derived in a similar man-

ner.
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